Appendix 4. Selected binomial regression model of each species demonstrating differences in detection probabilities for each of the three noise treatments (32dB, 42dB, and 50dB) and for 5dBV increments of microphone sensitivity loss.

Figure A4.1 Detection probabilities of a) Black-and-white Warbler and b) Le Conte’s Sparrow for five levels of microphone sensitivity loss and under three noise conditions based on selected binomial regression model. The dotted horizontal line indicates where detection is 0.5.
Figure A4.2. Detection probabilities of a) Nelson’s Sparrow and b) Sedge Wren for five levels of microphone sensitivity loss and under three noise conditions based on selected binomial regression model. The dotted horizontal line indicates where detection is 0.5.
Figure A4.3. Detection probabilities of a) Yellow Rail and b) Ovenbird for five levels of microphone sensitivity loss and under three noise conditions based on selected binomial regression model. The dotted horizontal line indicates where detection is 0.5.
Figure A4.4. Detection probabilities of a) Sora per-weep calls and b) Sora whinny calls for five levels of microphone sensitivity loss and under three noise conditions based on selected binomial regression model. The dotted horizontal line indicates where detection is 0.5.
Figure A4.5. Detection probabilities of a) Virginia Rail grunt calls and b) Virginia Rail tick-it calls for five levels of microphone sensitivity loss and under three noise conditions based on selected binomial regression model. The dotted horizontal line indicates where detection is 0.5.
Figure A4.6. Detection probabilities of a) American Bittern and b) Pied-billed Grebe calls for five levels of microphone sensitivity loss and under three noise conditions based on selected binomial regression model. The dotted horizontal line indicates where detection is 0.5.