Appendix 4. Results for effects of individual covariates on density estimates for the Olive-sided Flycatcher and Canada Warbler in New Brunswick and Nova Scotia.

Fig. A4.1, Relationship of predicted density to forest cover at two scales for Olive-sided Flycatcher (OSFL; WETxFOR model subset), and Canada Warbler (CAWA; WETNESS model subset). Upper panels show the local scale (50m buffer for CAWA, 100m for OSFL) and lower panels show territory scale (250 m buffer).
Fig. A4.2, Relationship of predicted density to forest cover and proportion of buffer classified as wet (depth to water table ≤1 m) at the territory scale (250 m) for the Olive-sided Flycatcher. Values on the X axis are standardized.
Fig. A4.3, Relationship of density of males per hectare to proportion of depth to water table classified as <= 1 in buffers for the Olive-sided Flycatcher (OSFL; WETxFOR model subset) and CAWA (CAWA; WETNESS model subset). Upper panels show the local scale (50m buffer for CAWA, 100m for OSFL) and lower panels show territory scale (250 m buffer). Values on the X axis are standardized.
Fig. A4.5, Relationship of predicted density of males per hectare to standard deviation of depth to water table at the territory scale (250 m) for Canada Warbler (WETNESS model subset). Values on the X axis are standardized.
Fig. A4.6, Relationship of predicted density of males per hectare to mean and standard deviation of canopy closure at two scales for the Olive-sided Flycatcher (OSFL; WETxFOR model subset) and Canada Warbler (CAWA; WETNESS model subset). Upper panels show mean canopy height at the local scale (50m buffer for CAWA, 100m for OSFL) and lower panels show standard deviation of canopy height at the territory scale (250m buffer). Values on the X axis are standardized.
Fig. A4.7, Relationship of predicted density of males per hectare to mean and standard deviation of canopy height at two scales for Olive-sided Flycatcher (OSFL; WETxFOR model subset) and Canada Warbler (CAWA; WETNESS model subset). Upper panels show mean canopy height at the local scale (50m buffer for CAWA, 100m for OSFL) and lower panels show standard deviation of canopy height at the territory scale (250m buffer). Values on the X axis are standardized.
Fig. A4.8, Relationship of density of males per hectare to landscape complexity (-1 = below mean, 0 = mean, 1 = above mean) at the territory scale (250 m buffer) for the Olive-sided Flycatcher (OSFL; WETxFOR model subset) and CAWA (CAWA; WETNESS model subset).

Fig. A4.9, Relationship of density of males per hectare to human footprint index at the territory scale (250 m) for the Olive-sided Flycatcher (OSFL; WETxFOR model subset) and CAWA (CAWA; WETNESS model subset). Values on the X axis are standardized.
Fig. A4.10, Relationship of density of males per hectare to road condition (0 = point count off road, 1 = point count adjacent to road) for the Olive-sided Flycatcher (OSFL; WETxFOR model subset) and CAWA (CAWA; WETNESS model subset).

Fig. A4.11, Relationship of density of males per hectare to local connectedness index at the territory scale (250 m) for the Olive-sided Flycatcher (OSFL; WETxFOR model subset) and CAWA (CAWA; WETNESS model subset). Values on the X axis are standardized.
Fig. A4.12, Relationship of density of males per hectare to disturbed area within the territory buffer (250 m) for the Olive-sided Flycatcher (OSFL; WETxFOR model subset) and CAWA (CAWA; WETNESS model subset).

Fig. A4.13, Relationship of density of males per hectare to site protection status at the point count location (0 = unprotected, 1 = protected) for the Olive-sided Flycatcher (OSFL; WETxFOR model subset) and CAWA (CAWA; WETNESS model subset).