Evaluating the Small Population Paradigm for Rare Large-Bodied Woodpeckers, with Implications for the Ivory-billed Woodpecker
Évaluation du paradigme des petites populations pour les pics de grande taille et implications pour le Pic à bec ivoire

Brady J. Mattsson, Warnell School of Forestry and Natural Resources University of Georgia Athens, Georgia, USA 30602
Rua S. Mordecai, Warnell School of Forestry and Natural Resources University of Georgia Athens, Georgia, USA 30602
Michael J. Conroy, Warnell School of Forestry and Natural Resources University of Georgia Athens, Georgia, USA 30602
James T. Peterson, Warnell School of Forestry and Natural Resources University of Georgia Athens, Georgia, USA 30602
Robert J. Cooper, Warnell School of Forestry and Natural Resources University of Georgia Athens, Georgia, USA 30602
Hans Christensen, Tved 107 C, DK-6270 Tønder, Denmark

DOI: http://dx.doi.org/10.5751/ACE-00255-030205

Full Text: HTML   
Download Citation


Abstract

Six large-bodied, ≥ 120 g, woodpecker species are listed as near-threatened to critically endangered by the International Union for Conservation of Nature (IUCN). The small population paradigm assumes that these populations are likely to become extinct without an increase in numbers, but the combined influences of initial population size and demographic rates, i.e., annual adult survival and fecundity, may drive population persistence for these species. We applied a stochastic, stage-based single-population model to available demographic rates for Dryocopus and Campephilus woodpeckers. In particular, we determined the change in predicted extinction rate, i.e., proportion of simulated populations that went extinct within 100 yr, to concomitant changes in six input parameters. To our knowledge, this is the first study to evaluate the combined importance of initial population size and demographic rates for the persistence of large-bodied woodpeckers. Under a worse-case scenario, the median time to extinction was 7 yr (range: 1–32). Across the combinations of other input values, increasing initial population size by one female induced, on average, 0.4%–3.2% (range: 0%–28%) reduction in extinction rate. Increasing initial population size from 5–30 resulted in extinction rates < 0.05 under limited conditions: (1) all input values were intermediate, or (2) Allee effect present and annual adult survival ≥ 0.8. Based on our model, these species can persist as rare, as few as five females, and thus difficult-to-detect, populations provided they maintain ≥ 1.1 recruited females annually per adult female and an annual adult survival rate ≥ 0.8. Athough a demographic-based population viability analysis (PVA) is useful to predict how extinction rate changes across scenarios for life-history attributes, the next step for modeling these populations should incorporate more easily acquired data on changes in patch occupancy to make predictions about patch colonization and extinction rates.

Résumé

Six espèces de pics de grande taille (≥ 120 g) ont un statut considéré comme étant de préoccupant à en voie de disparition par l’Union internationale pour la conservation de la nature (UICN). Le paradigme des petites populations assume que ces populations vont probablement disparaître à moins d’une augmentation de leur effectif, mais les influences combinées de population de départ et des taux démographiques, c.-à-d. le taux de survie annuel des adultes et la fécondité, peuvent permettre la persistance des populations de ces espèces. Nous avons utilisé un modèle stochastique par classes pour population unique aux données démographiques disponibles pour les pics des genres Dryocopus et Campephilus. En particulier, nous avons déterminé les changements prédits des taux d’extinction, c.-à-d., la proportion des populations simulées qui sont disparues en moins de 100 ans, aux changements proportionnels de six paramètres. À notre connaissance, ceci est la première étude qui évalue l’influence combinée de l’effectif de la population initiale et des taux démographiques afin de mesurer la persistance des pics de grande taille. Dans le pire des scénarios, le temps médian jusqu’à l’extinction était de 8 ans (min.-max.: 1-50). De toutes les combinaisons des autres valeurs intégrées dans le modèle, l’accroissement de la population initiale par une femelle provoquait, en moyenne, une diminution de 0.4% à 3.2% (min.-max.: 0%-28%) du taux d’extinction. L’accroissement de l’effectif de la population initiale de 5 à 30 résultait en des taux d’extinction < 0.05 sous certaines conditions: (1) toutes les valeurs intégrées étaient intermédiaires, ou (2) l’effet d’Allee était présent et le taux de survie des adultes ≥ 0.8. Selon notre modèle, ces espèces peuvent persister en étant rares, avec aussi peu que cinq femelles, et sont donc difficile à détecter, à condition qu’elles maintiennent un recrutement ≥ 1.1 femelle par femelle adulte chaque année et un taux de survie à l’état adulte ≥ 0.8. Bien qu’une analyse de viabilité des populations (AVP) fondée sur la démographie soit utile pour prédire les changements des taux d’extinction selon différents scénarios pour les attributs du cycle vital, la prochaine étape pour la modélisation de ces populations devrait incorporer des données plus faciles à obtenir quant aux changements d’occupation des parcelles d’habitats afin de pouvoir prédire la colonisation de ces parcelles et les taux d’extinction.

Key words

Allee effect; Campephilus principalis; Dryocopus; endangered species; multiple-variable perturbation analysis; stage-based model.

Copyright © 2008 by the author(s). Published here under license by The Resilience Alliance. This article is under a Creative Commons Attribution-NonCommercial 4.0 International License. You may share and adapt the work for noncommercial purposes provided the original author and source are credited, you indicate whether any changes were made, and you include a link to the license.

Avian Conservation and Ecology ISSN: 1712-6568